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A simplified model is developed for the dynamics of pressure fields supported by 
deflagrations in open axisymmetric configurations. The model employs overall 
conservation of mass, laws of flame propagation, overall conservation of momentum 
and a statement of conservation of mass and momentum across a shock that precedes 
the flame. The model represents an improvement over an earlier model in a number 
of respects, notably in allowing pressures a t  the flame and a t  the shock to differ. 
Explicit results for time histories are obtained by an expansion method for small 
values of the Mach number of flame propagation. The model may be employed to  
estimate overpressures that may develop subsequent to  ignition of flat vapour clouds. 

1. Introduction 
An earlier publication (Williams 1976 ; hereinafter referred to as I) addressed the 

problem of obtaining simple estimates for pressures encountered when a deflagration 
propagates through an unconfined combustible in a configuration more complex than 
that of planar, cylindrical or spherical symmetry. Relevant literature has been cited 
in I and will not be recited here. The work in I produced a model capable of providing 
order-of-magnitude estimates of pressures in axisymmetric configurations. To aid in 
the estimation of damage from explosions of unconfined vapour clouds it is desirable 
to develop improved models having better accuracies. The study reported herein 
defines an improved model and draws conclusions concerning its accuracy and its 
potential applications. As in I, the philosophy of the approach has been to introduce 
as little detail of the physics as possible, consistent with being able to  calculate the 
quantities of interest. 

2. Description of model 
An axisymmetric configuration is considered in which there is a thin shock a t  radius 

R and a thin flame at radius r ,  with r < R. These flame and shock surfaces may be 
concentric spheres or concentric cylinders. For ground-level initiation of a uniform 
cloud of initial height h, the spherical approximation is employed until the flame 
breaks through the top of the cloud, and the cylindrical approximation is employed 
thereafter. I n  the cylindrical case the shock extends into the inert gas above the cloud, 
in a manner to be defined later (see appendix A). The flame is presumed to propagate 
at a prescribed burning velocity S with respect to the combustible ahead of it. 
Although the model allows S to vary with time t ,  the difficult problem of calculating 
the turbulent burning velocity is not addressed. 

The model in I postulated a spatially constant pressure throughout the gas enc31osc.d 
by the shock. Although this is not too unrealistic for sufficiently high Mach numbers 
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of flame propagation, the overpressure a t  the flame may exceed that a t  the shock 
by orders of magnitude a t  lower flame Mach numbers. Therefore i t  is of interest to  
modify the model by allowing the pressure p just behind the shock to  differ from the 
pressure P just ahead of the flame. I n  selecting a pressure scale herein, ambient 
pressure is assigned the value unity. The present model may be termed a two-pressure 
model, in contrast with the one-pressure model in I. 

Overall conservation principles will be introduced and employed to calculate 
histories of R, p ,  r and P. 

3. Conservation laws 
3.1. Shock relations 

It is convenient although not essential to use the initial shock radius R, and the 
Newtonian sound speed a, of the undisturbed gas for defining non-dimensional 
variables, as in I. The definitions of I, x = r/R,,  y = R/R,, s = S/a,  and r = a, t/R,, 
are then introduced. The statement in I of conservation of mass and momentum 
across the shock is then written as 

where K denotes the ratio of the density of the undisturbed gas to the density just 
behind the shock. According to shock relations for an ideal gas, 

where y denotes the ratio of specific heats. Contary to the situation in I, the greater 
freedom of the two-pressure model favours use of (2) in all cases. 

3.2. Overall mass conservation 
The ratio K of the ambient density to the density of the gas just ahead of the flame 
is related to K by the assumption that isentropic conditions with constant y prevail 
between the shock and the flame, i.e. 

1lY 
K =  K(’) (3) 

The approximate statement in I of overall mass conservation may be improved by 
employing an average between K-l and K - ~  for the density of the shocked but unburnt 
gas. For the axisymmetric configuration the formula in I for overall mass conservation 
involves the relief efficiency 7 of the shock pattern above the cloud, introduced to 
account for the influence of these shocks on the mass balance. An alternative 
definition of 7 and a discussion of its interpretation are given in appendix A. Equating 
the sum of the mass in the cylinder and the hemisphere above i t  to  the initial value 
of this sum, we find in non-dimensional variables that 

where a = h/R,. Here z ,  a non-dimensional measure of the mass of burnt gas, is 
defined as the ratio of the density of the burnt gas to ambient density, multiplied 
by x j / j .  I n  the axisymmetric problem j = 2;  the spherical case applicable prior to 
Rarne breakthrough is recovered by putting j = 3 and 7 = 0. 
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3.3. Equation for Jlame spread 

The density of the burnt gas may be related to P through the ideal-gas law. For this 
purpose, let 8 denote the product of three factors: the ratio of the ambient 
temperature to the temperature of the burnt gas, the ratio of the mean molecular 
weight of the burnt gas to  the mean molecular weight of the ambient gas, and the ratio 
of the pressure behind the deflagration to the pressure just ahead of it. Although the 
first of these three factors is the dominant contributor to 8 and causes i t  to be of order 
l O - l ,  the second and third may account for generally small decreases of molecular 
weight and pressure across the deflagration, thereby providing small corrections to 
the formulation in 1. With this definition of 8, it is seen that 

= epx i / j ,  ( 5 )  

in terms of which the non-dimensional form of the equation for the rate of engulfment 
of combustible by the flame (i.e., the mass balance for the burnt gas) may be written 
as 

Equation (6) also represents an improvement over the corresponding formula in I 
in that a factor /3 has been introduced to  account for horizontal motion of the gas 
behind the flame as a consequence of upward expansion of hot products, including 
effects of buoyancy. The evaluation of p is discussed in appendix B. 

3.4. Conservation of momentum in the unburnt gas 

Because of the additional degree of freedom introduced by allowing P and p to differ, 
an additional conservation law is needed, beyond those introduced in I. Since 
pressure-field variations between the shock and the flame are responsible for 
differences between P and p ,  i t  is logical to  introduce a statement of overall 
momentum conservation for the shocked but unburnt gas as the additional conser- 
vation principle. The formulation of this momentum conservation is developed in 
appendix C. The results are conveniently expressed in terms of the non-dimensional 
measure m of the momentum of the shocked but unburnt gas, defined in (C 2 ) .  The 
conservation law, obtained from (C 1) with terms of order sz neglected, is 

dm 
dr 
- = (P-  1) xi-1 + [ i j (P-  1) + (1 -#j) (p - l)]  ( g - 1 - X i - 1 ) .  (7)  

I n  terms of other variables, i t  is seen from appendix C that m may be expressed as 

where a is a weighting factor for the contribution of the momentum just ahead of 
the flame to m. Equation (8) expresses m as a weighted average of the momentum 
a t  the flame and a t  the shock. Although the value a = $ seems reasonable, it will be 
found by studying the limit of small s that  a correction to  this value is desirable if 

3.5. Summary of the problem 
Equations (1)-(8) may be viewed as expressions for y, K ,  K ,  x ,  p ,  z ,  m and p with 
y, s, 8, 7, a,  p, a and j given. Since there are three first-order differential equations 
in the system, initial values for z and m are needed, in addition to the initial value 

71 * 0. 
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y = 1. Although eliminations of some of the variables are readily achieved, derivation 
of results with the generality attained in I is not feasible. Therefore attention is 
restricted to ' quasi-steady ' (or self-similar) solutions and to time-dependent be- 
haviours for small flame Mach numbers s. 

4. Self-similar solutions 
From I it  may be inferred that at late times the system tends to approach a 

self-similar behaviour. Self-similar solutions may be derived by beginning with the 
assumptions that P, p and y/x remain constant, independent of T .  With y constant, 
i t  follows from (2) and (3) that  K and Kalso remain constant. The self-similar solutions 
apply when s, P, a and 8 are constant, whence z/xj is constant according to ( 5 ) ,  and 
,u = Ty/a must then be constant, according to (4), as has been found and discussed 
in I. From (1) it  is found that y increases linearly with T ,  viz y = 1 + C T ,  where 
c = [@ - I)/( 1 - ~ ) ] 4 .  The constancy of y/x then implies that x is proportional to 1 + CT, 

and ( 5 )  and (8) respectively then show that x and m are proportional to  (1 + c7) j .  Use 
of these results in (6) and (7 )  demonstrates that  

- m = K {(P- l ) + [ + j ( P - l ) +  (1 -ij) (p- 111 [@-l-1]}. 
2 Ps 

Finally, from (l), dyj/dT = cjyj-l, which when divided by (6) produces 

(9) 

The algebraic equations that describe the self-similar behaviour are (2)-(5) and 
(8)-(10); they serve to determine p ,  P, K ,  K ,  ylx, z/xj and m/xj as functions of y ,  
s, 19, p, p, a a n d j .  Through various substitutions the system may be reduced to two 
simultaneous nonlinear equations for the two unknownsp and P, which may be solved 
by trial and error. 

Because of the large number of parameters involved, a parametric study like that 
reported in I has not been performed for the present self-similar solutions. Instead, 
a comparison was made of predictions of the models for a representative case, as shown 
in figure 1. The value selected for Ps corresponds to a relatively large burning velocity, 
of the order of 2+30 m/s; at lower burning velocities predicted overpressures are 
reduced, roughly in proportion to ( P S ) ~ .  I n  generating results for the two-pressure 
model in figure 1,  the formula a = +[l +#(q/a) y]-l was employed in (8), as derived 
in 95. 

The dashed lines in figure 1 represent the self-similar predictions of the present 
model. The upper dashed line is the overpressure a t  the flame, P- 1, and the lower 
dashed line that a t  the shock, p -  1. The horizontal lines correspond to the spherical 
solution (with j = 3 and 7 = 0) ; for weak ignitions they represent upper bounds of 
overpressures. These bounds are close to  those of the more-exact similarity solutions 
(Kuhl 1981), e.g. for X = 20 m/s in the spherical case, the present value of 0.22 for 
the overpressure a t  the flame is to be compared with 0.265. The vertical line defines 
the condition for the flame to break through the top of the cloud, as given by (B 1). 
The curves showing the axisymmetric solutions are most relevant a t  values of R/h 
greater than that of flame breakthrough. If 7 and Ps remain constant then, as R / h  
increases, the self-similar overpressures decrease as shown. The shock radius is found 
to be 2.24 times the flame radius in this example. 
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Shock position/Cloud height 

FIQURE 1. Overpressures as functions of the ratio of the shock position 
to the cloud height for various self-similar models. 

The solid curves in figure 1 are the self-similar predictions of the model published 
in I, with (2) employed for K .  This model provides only one overpressure, which is 
seen to fall between the shock and flame overpressures of the present model. Thus, 
if only order-of-magnitude estimates of pressures are desired, the simpler model in 
I seems adequate. If peak pressures must be calculated then the present, two-pressure 
model seems better. 

Shown departing from the solid curve in figure 1 a t  the smaller values of R / h  is 
a dashed curve labelled ‘small-s expansion’. This curve is obtained from the 
self-similar version of a development for the one-pressure model analogous to the 
development given in the following section for the two-pressure model. It is seen in 
figure 1 that, even at this relatively large value of ,ds, the expansion provides 
overpressure accuracies better than 15 % . This suggests that the simplifications to be 
derived in $5 produce results with good accuracy in the situations of greatest practical 
interest. 

5. Simplifications for small Mach numbers of flame propagation 
In the majority of the applications s is a small parameter. This observation has 

prompted research based on acoustics. The acoustic studies, which involve the 
solution of partial differential equations, are particularly worthwhile when asymptotic 
solutions admitting weak shocks are employed (Chiu, Lee & Knystautas 1977).  
However, for asymmetrical configurations this approach has not yet properly con- 
sidered the presence of a deflagration enclosed by a shock, and is not yet sufficiently 
well developed to be compared with the present method. To facilitate future 
comparisons and applications of the present results, it  is of interest to develop the 
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small-s limit of the theory. Formal expansions of (1)-(8) for small values of s provide 
significant simplifications that enable analytical solutions to be obtained. These 
solutions are derived here and are used in 56 to discuss time-dependent behaviour. 

When s is small both P- 1 and p -  1 are small if these assumptions are consistent 
with the initial conditions. Therefore we put P = 1 + e and p = 1 + 6, and treat e and 
S as small quantities. From the expansion of ( 2 ) ,  K = 1 -S /y ,  and therefore the 
solution to the expansion of ( 1 )  is 

With E small, the expansion of ( 5 )  gives z = Oxj/j in the first approximation, and, since 
the expansion of (3) is K = 1 - - s / y ,  the first approximation to (6) is dx/dr = sP/S if 
0 remains constant. Therefore 

y =  l+yb. (11) 

x=x,+J:$dr, (12) 

where xo is the value of x a t  7 = 0. Equation (12) allows s to be a prescribed function 
of r .  From (11) and (12) i t  is seen that the motions of the (weak) shock and of the 
flame are known in advance and are continuous. Self-similar solutions may be 
recovered from (11) and (12) by letting s be constant and by putting x, = s/l/Sy3, 
obtaining x/y = sp/Byi = constant. 

The functions e(r) and S(r) are obtained from expansions of (4), (7)  and (8). Use 
of the expansions for P,  p ,  K and K in (8) shows that, for small E and S, 

m = (y-x) (l-a)y+l-(l+O{S})+ax~-l- S s~(l-e)(l+O{E,s))], e (13) [ Yt 
where 0 defines the orders of neglected terms. I n  view of (12), (7) can be written 
exactly as 

spdm 
0 dx 1. -_- - ex.'-'+ [ t j s  + (1 - t j )  S] (yi-1 -xi-' 

The expansion of (4) to  first order in e and 6 can be shown to be 

Equations (13)-( 15) possess solutions consistent with the assumption that 6 is of 
higher order than e in the small parameter s/3/6, provided that a is suitably chosen. 
Equations (1 I )  and (12) show that, for sufficiently large 7 ,  x/y is of order sP/O. Given 
suitable initial conditions, x/y is always of this order; consideration is restricted to 
such cases. Then (15) shows that e is of order (sP/O) j .  Since (x/y)i-l sp/e is of order 
(sp/e)j, the first term in the square brackets in (13) is of higher order than the second 
when S is of higher order than e. Since E and 6 both are of higher order than x/y, 
a two-term expansion of (13) is 

sP 6 
m = (y-x)x~-1a-(1-8)+(1-a)y~-I. 

6 Y' 

When this result is substituted into (14) and an order-of-magnitude analysis is 
performed, it is found that the dominant higher-order terms occur on the left-hand 
side and that S is of order (s,8/$)j+l, provided that the selected weighting a causes 
an identity to occur in the lowest order. 
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With the anticipated relative ordering of c and 6, the result 
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is obtained in the first approximation. The calculation of S is more complicated, and 
entails employing (16) in (14). If ,u is constant, then to lowest order 

a = -  x 1+-y 2 I-’ 
results from the substitution and expansion. The consequent 7-dependent weighting 
for the momentum appears physically reasonable in view of possible influences of the 
shocked non-combustible on the momentum of the shocked combustible. Carrying 
the expansion to  second order, using (15) and (18), yields under self-similar conditions 

[ja gy ( 1 - 0) + ( 1 - 4 j) E ]  - 
6 =  (3-l , 

j( 1 - a )  - (1 -4j) 

in which c refers to  the first approximation given in (17) .  F o r j  = 3 the c term in (19) 
is of higher order and should be omitted; for j = 2 it must be retained. With j = 3 
we have a = $, and (19) is 

2 y ( 1 - e ) ( 7  Y 
with j = 2, (19) is p - l =  

Pressure-time histories may be calculated from (17),  (20) and (21) by employing 
(11 )  and (12) for y and z. These calculations may be performed for both spherical 
and axisymmetric propagation, the transition between the two being defined by (B 1 ) .  
They also may be performed subsequent to complete burnout of a centrally ignited 
axisymmetric cloud by setting z = z, = constant, while y is still given by ( 1 1 ) .  If the 
initial radius of the cloud is R, and if the burnt gas is assumed to be spherical in shape, 
then a mass balance at burnout gives 

where P i s  calculated from the axisymmetric solution at burnout. For very flat clouds 
the formula x, = (R,/R,)/(PB): may be better than (22). Pressure decays after 
burnout are given by (17) and (21) with these values of 2,. 

6. Time-dependent solutions 
The prescription given in $5 is readily employed to calculate time-dependent 

solutions without invoking self-similar hypotheses. Results of a representative 
calculation of this type are shown in figure 2. The initial conditions selected for the 
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FIGURE 2. Overpressures, shock position and flame position as functions of time, on the basis of 
an expansion for small Mach numbers of flame propagation. 

solid curves in this figure were ro = 0 and R, = h. Flame overpressures also are shown 
for r, = 0 ,  R, = $ h ( a  = 2) and for ro = 0 ,  R, = 0 (a= a). The upper bounds 
indicated for the flame and shock overpressures were obtained from the self-similar 
spherical solution. 

It is evident from figure 2 that for the initial conditions selected self-similar 
conditions are not attained unless R, = 0. During spherical propagation the over- 
pressures generally increase with time. When ro = 0 the overpressure at the flame 
initially increases cubically with time and that a t  the shock as the fourth power. 
Breakthrough occurs well before the self-similar pressures are reached. 

The equations predict discontinuities in pressures a t  breakthrough. Such discon- 
tinuities are inherent in all of the simplified models that have been considered. In 
figure 2 if '17 were made to increase rapidly from 047 at breakthrough to 0 9 ,  then 
the discontinuity in P would be eliminated, and a curve like that labelled 'fared' 
would be obtained for P- 1. Although fundamental justification for the variation in 
7 can be devised, i t  would be complicated to augment the model in a manner that 
eliminates both of the pressure discontinuities a t  breakthrough. The discontinuities 
usually are small and can be smoothed arbitrarily by hand, as has been done in the 
dashed curves. All smoothing must be done after breakthrough because modifications 
to the spherical solution by pressure release cannot occur sooner. 

The solid curves after breakthrough in figure 2 are those calculated for continued 
flame propagation. They exhibit slowly decaying pressures as a consequence of 
increasing upward relief with '17 constant. The dashed curves beginning at 7 = 9 show 
cessation of flame travel and enhanced pressure decay, calculated to occur after 
burnout if the cloud radius is R, = 2-02h. For clouds with larger values of R,/h this 
decay begins proportionally later. Figure 2 is non-dimensional and may be employed 
for any value of h. 
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FIQURE 3. Universal curves of transient pressure build-up at the flame and at the shock, for 
spherically symmetrical conditions within the context of the expansion for low Mach numbers of 
flame propagation. 

Peak overpressures achieved are of particular interest. They generally occur during 
spherical propagation and are influenced more strongly by initial conditions and by 
cloud heights than are post-breakthrough pressures. From ( 1  l ) ,  (12) (withp = l ) ,  (17) 
(with j = 3, q = 0) and ( Z O ) ,  overpressures during the spherical stage are readily 
obtained as functions of initial conditions. 

The initial value 2, = 0 is realistic for most ignition sources, and gives 
y/x = aiB/S+ R,B/St, where ai = yja, is the isentropic sound speed. Use of this 
result in (17)  and (20) enables universal pressure-time curves to be plotted for the 
transient spherical solution. These curves are shown in figure 3, where P, and p ,  
identify self-similar values. It is seen from figure 3 that the maximum overpressures 
P,-1 and p,-1 are approached rather slowly with increasing t .  The peak is 
achieved a t  breakthrough, which occurs at t z ht%/S. 

P--l  
The peak value of P- 1 is 

which is roughly proportional to s3 but also depends significantly on R,/h. The 
self-similar value of the peak P- 1 is achieved if R,/h = 0, and the peak decreases 
as R,/h increases. In  figure 2, if R,/h is decreased then there is no significant 
modification of the time coordinate, but overpressures are rescaled to  have higher 
peak pressures and earlier inflexions, as may be seen by comparing the curves for a = 1 
and 2. 

The sensitivity of the achieved overpressure to R,/h emphasizes the importance 
of the initiation conditions. It is difficult to estimate R, accurately for most initiation 
mechanisms. The occurrence of R,/h as the relevant parameter implies that for a given 
initiation mechanism the peak overpressure will increase with increasing cloud height. 
The self-similar values, written in figure 3, provide conservative estimates of peak 



438 F. A .  Williams 

overpressures that are not likely to be too low under any circumstances other than 
an explosive initiation that produces r > RS/ai8 during an early portion of the 
history. 

7. Conclusions 
We have demonstrated that i t  is possible to  develop a simplified model for the 

combustion of axisymmetric vapour clouds that distinguishes between the pressure 
at the flame and the pressure behind the shock. Simple, analytical results for time 
histories of pressure fields are obtainable from the model in terms of an expansion 
for small Mach numbers of flame propagation. The results afford the possibility of 
calculating the pressure development subsequent to  ignition of pancake-shaped 
clouds of combustible gases. The approach is much quicker than alternative 
procedures, such as numerical integration of partial differential equations, and 
moreover it affords the possibility of developing parametric results at low cost. 
However, some uncertainties remain concerning accuracies of predictions, and 
therefore i t  would be of interest to compare selected results with those of more 
laborious calculations. 

There are aspects of the present model that  deserve further study. It would be of 
interest to improve procedures for calculating efficiencies of the pressure-wave 
pattern for pressure relief. This would be especially desirable for times immediately 
after flame breakthrough, since such an improvement could eliminate the theoretical 
discontinuity in overpressure. Less uncertain approaches for taking into account 
upward expansion and buoyant rise of burnt gases also seem worth investigating. In  
addition, ignition and flame-development studies, directed toward obtaining im- 
proved effective values of the initial shock radius, seem warranted in view of the 
sensitivity of the predictions to this parameter. And, of course, better burning- 
velocity information will always be needed. 

Finally, i t  would be of interest to attempt to extend the simplified models to 
account for configurations lacking axial symmetry. Although such extensions would 
probably involve introduction of significant additional uncertainties, they would 
enhance predictive capabilities for hazards of practical concern, in a realm for which 
finite-difference methods are generally unavailable. Moreover, they may uncover 
configurations particularly prone to  flame acceleration. 

I am especially indebted to Dave Lucas for many significant observations and 
suggestions concerning this work. 

Appendix A. Efficiency of the shock pattern 
First consider as a control volume a right circular cylinder of radius R and height 

h. The mass contained initially in this volume is npo R2h, where po is the initial density. 
When the shock radius is R the mass in this volume is np, r2h+ npl(R2 - r2 )  h,  where 
p2 and p1 are respectively the average densities of the burnt gas and of the shocked 
but unburnt gas. If there were no upward relief then this mass would equal the initial 
mass. Because of relief through propagation of pressure waves above the cloud and 
through upward expansion, this mass is less than the initial mass. The efficiency 7 
may be defined by stating that the difference between the initial mass and the actual 
mass a t  the time of interest is $ny(p,-p,) R3. 

This definition may be motivated by considering a control volume consisting of 
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a hemisphere of radius R with a horizontal base located at the top of the previous 
control volume. Since buoyant rise of hot gas is much slower than shock propagation, 
non-combustible gas outside this hemisphere is uninfluenced by the explosion. 
Therefore mass conservation provides, as an equivalent definition of 7, 

where p is the local density and V is the volume of the hemisphere, the integration 
being extended over this volume. According to (A l ) ,  7 is the ratio of the volume- 
average overdensity in the hemisphere to  the average overdensity of the shocked but 
unburnt gas. 

For small Mach numbers of flame propagation, a well-posed acoustic problem can 
be defined for calculating the p-field and hence 7. I n  this acoustic limit the 
hemispherical control volume corresponds properly to the region influenced by 
pressure waves. An idea of the magnitude of 7 can be obtained from approximate 
considerations that do not involve solution of the acoustic problem. For example, 
if the overdensity field is assumed to vary inversely with radius, then in the cylindrical 
region P R  

R 
277 x-lxdx 

2nS x d x  

- - __ 
R it2 ' 

J --  
P1-Po 

while in the hemispherical region R 

2 m j  x-lx2dx -- iR2 SSS(P-Po)dI/ ' cc - QR3 ' 
277 x2dx SR V 

with the same constant of proportionality. The value of 7 is then found from (A 1)  
to be 2. As an opposite and unrealistic extreme that corresponds to  a point source 
a t  time zero, it may be assumed that all of the overdensity is located in a shell at 
the edge of the region of disturbance; it is then found that 

2n [ R ~ - 1 S ( R - ~ ) z 2 d ~ / 2 a  iRx2dx  
- 3  - 2 '  

J J 

2 n l R  x- lS(R-x)xdx  nR2 I 
7 =  

If the shell of overdensity exists only above the cloud, and the density remains 
constant for the shocked but unburnt gas in the cylindrical control volume, then 
x-lS(R-x) is replaced by unity in the denominator, and 7 = $ is obtained. Although 
none of these estimates is definitive, all produce values of 7 of order unity. We 
conclude that 7 = 0.8 may be used, with a t  least 20 yo accuracy, for low Mach numbers 
of flame propagation. 

Values of 7 appreciably greater than unity cannot be achieved without assigning 
the non-combustible gas a substantially greater capacity than the combustible for 
accepting mass under the influence of pressure waves. Smaller values of 7 would 
necessitate a reduced extent of the region of overdensity in the gas above the cloud; 
this may occur a t  high Mach numbers of flame propagation. Upward expansion of 
hot products of combustion reduces 7 by reducing the density in part of the 
hemisphere, but the fraction of the volume so affected is usually small compared with 
the total volume of the hemisphere. 
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Appendix B. Effects of upward expansion of hot gases 
Both buoyancy and the volume increase associated with the density decrease 

during combustion tend to produce upward expansion of the burnt gas. At first let 
us neglect buoyancy, which becomes important only in late stages. During spherical 
propagation the gas expansion then is isotropic, and a t  the time that the flame breaks 
through the top of the combustible cloud the non-dimensional radius is z = xt, where 

a 
xt = of' 

Thus the height of the cloud expands by a factor proportional to the cube root of 
the density ratio. This factor of expansion is necessary if the burnt gas is to remain 
a t  rest. 

After breakthrough i t  seems reasonable to assume that the burnt gas continues to 
expand isotropically. If the burnt gas is approximated as a circular cylinder of radius 
r and height h,, then 

( B  2 )  
h 

h, = - 
(PO)) 

is obtained for the burnt-cloud height. The influence of (B2) on the mass balance for 
the burnt gas may be investigated by considering a cylindrical control volume of 
radius r and height h. The rate of upward motion of burnt gases out of this control 
volume may be expressed in terms of v, the average vertical velocity across the surface 
a t  height h. The mass balance for the control volume becomes 

where Pb and pf denote respectively the densities of the burnt gas and of the gas just 
ahead of the flame. Derivation of (6) from ( B 3 )  necessitates introduction of an 
approximation for v. 

If all of the upward expansion occurs just prior to the arrival of the flame, then 
there is no further upward expansion in the control volume considered, and v = 0. 
I n  this case the flame sheet extends to  height h, and has quiescent conditions behind 
it, and p = 1 in (6). The opposite limiting case is that  in which all of the upward 
expansion occurs after arrival of the flame. I n  this case, since the burnt material 
occupies a cylinder of height h,, the mass conservation is 2nrhp,S = d(nr2h,p,)/dt, 
which provides 

when substituted into ( B 3 ) ,  and gives p = h/h,  in (6). The average of these two 
extremes provides 

when use is made of ( B 2 ) .  
The radial component of velocity of the burnt gas just behind the flame, ub, may 

be related to v by assuming steady flow (no mass accumulation) in the cylindrical 
control volume of height h which is terminated just behind the flame, namely 
2nrh( -ub)pb = w2VPb.  By substituting into this formula half of the maximum 
estimate for v given above, we obtain 

p = &[ 1 + (PO))] (B 4) 
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as a rough estimate. The steady-flow approximation is best if the upward flow occurs 
mainly near the flame so that there is relatively little variation of burnt-cloud height 
with radius. 

The general expression for mass conservation across the flame is 

Pfs =Pb(s+uf-ub),  (a 6) 

where uf is the radial velocity of the gas just ahead of the flame. Use of (B5) in (B6) 
gives 

There are evidently uncertainties in these estimates, and the alternative formula 

which corresponds to 

u , = p s  --1 , [i: 1 

appears to be just as good, and also produces some algebraic simplifications in the 
analysis. 

Effects of buoyancy may be estimated by considering a vertical momentum balance 
for the cylindrical region of burnt gas with only inertial and gravitational forces 
included. This balance may be written as 

where 6 is the volume-average vertical component of velocity over the cylinder and 
g represents the acceleration due to gravity. From (B10) i t  is seen that buoyancy 
produces an increment in the vertical velocity of the burnt gas given roughly by 
bf/Pb- 11 g t ,  where t denotes time from ignition. This increment may be added to v 
in (B 3), and in the steady-flow approximation i t  provides an additional contribution 
of -i(r/h) @f/& - 11 gt  to Ub, thereby increasing the horizontal inflow velocity behind 
the flame (and hence decreasing the outflow velocity ahead of it).  The buoyancy 
correction is negligible at early times, but becomes large at late times for sufficiently 
flat clouds. 

Appendix C. Momentum conservation for the shocked but unburnt gas 
The necessary statement of momentum conservation may be derived, for example, 

by beginning with the differential forms of the conservation equations for mass and 
momentum with viscous and gravitational forces neglected. Integration of a suitable 
combination of these equations from the burnt gas just behind the flame (identified 
by subscript b) to the undisturbed gas just outside the shock gives 

;[p~Xj-~dX = (Apb+pbut)rj-l+(j- 1 )  s: ApXjF2dX, (C 1 )  

where p denotes density, u radial velocity, Ap overpressure (the difference between 
the local pressure and ambient pressure) and X the radial coordinate. 
- In  the last integral we replace Ap by the constant average overpressure 
Ap = bP+ (1 - b ) p -  1 ,  where the weighting factor b defines the importance of the 
pressure a t  the flame (in comparison with that at the shock) in contributing to the 
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average of Ap. It seems logical to take the arithmetic mean, b = 8, but for the spherical 
problem, j = 3, this selection results in a non-physical prediction that p < 1 in the 
quasi-steady solution for small s.  To avoid this inconsistency, the value b = aj is 
employed ; for j = 3 this ensures that p > 1 and causes p - 1 to approach zero more 
rapidly than P- 1 as s approaches zero. 

The non-dimensional momentum is conveniently defined as 

where po is the ambient density. With this definition and the pressure weighting just 
discussed, ( C l )  gives (7) directly when the momentum balance across the flame, 

A general approach to the definition of volume averages may be introduced to 
Apb = P- 1 - (S2/K) [Pf/Pb- 11, is employed. 

obtain an expression for m ;  this results in 

R - r  
m = [( 1 - a )  p, us Ripl+ upf uf rj-']___ 

Po a0 R&' 
where the subscript s identifies conditions just behind the shock and where a is the 
fraction of the contribution of the value of pu a t  the flame to the average value of 
pu. In  (C 3) ,  mass conservation across the shock, p,( - us + dR/dt )  = po dR/dt ,  is 
employed to write 

P s u , =  [@-W-41~ , 
Poao K 

where use has been made of (1). In addition, if (B8) is selected for up, then 

Substitution of ((24) and ( C 5 )  into (C3) produces (8). 
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